

Liselotte Aldén <u>liselotte.alden@geo.uu.se</u>

- Introduction End of life of Wind Farms
- Choices at end of technical life time
- Decommissioning Policy Review
- Turbine disposal
 - Metal Prices
 - Blade Disposal
- Decommissioning costs
 - Security bonds
 - Restoration grade

Guiding factors in terms of sustainability

- Life time extension
- Repowering
- Circular economy

Managing the asset of a Wind Farm

- Many different factors are involved
 - Technical conditions of the wind farm
 - Operation and maintenance strategy
 - Wind resource
 - Permit
 - Policy regarding planning, environmental impact, financial support etc.
 - Lcoe/Financial potential

Choices at end of life

- Repowering
- Life time extension
- Decommisioning

What do we mean?

- Repowering
 - Use the site
 - New turbines, new foundations, grid?
 - Increase energy production
- Life time extension
 - Keep using foundations, tower, grid
 - New nacell, new blades

Decommissioning

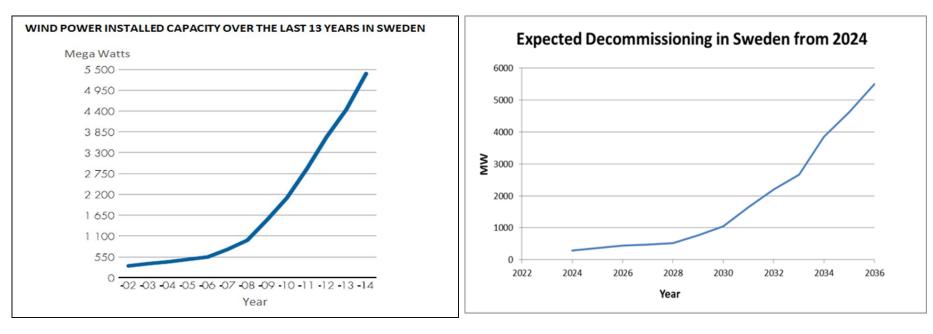
- Take down turbines
- Restore the site

What are the choices?

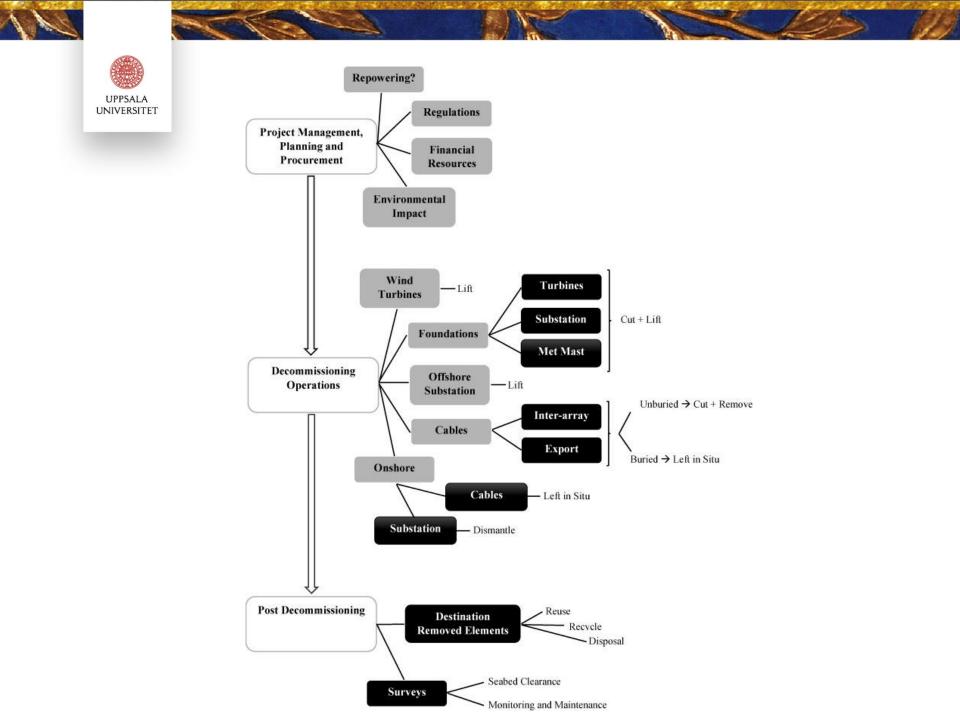
- Repowering
 - Is there potential to use the wind resource more effective?
 - Is there potential according to planning and permitting?
 - Is there potential for technology and infrastructure?

Life time extension

- How long is the permit valid?
- Any financial support?
- Technical condition
- O&M

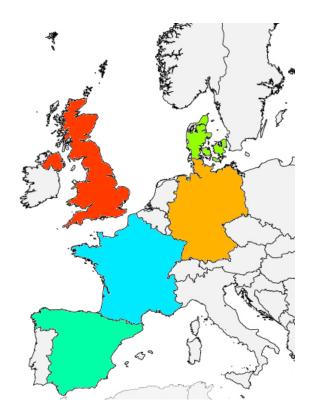

Decommissioning

If the two above doesn't work out



Installed Capacity of Wind Power and Decommissioning

Source: Svensk Energi, 2015



Decommissioning Policy

• The policies in Denmark, France, Germany, Spain, the U.K. and the U.S. are reviewed as well as in Sweden

Who decides the policy?

<u>Onshore</u>

Predominate National Level Denmark (guidelines and over 150 meters) France U.K. (over 50MW) Predominate Local Level Germany Spain U.S. U.K. (under 50MW) Sweden

Who decides the policy?

<u>Offshore</u>

Predominate National Level

Denmark France Germany Spain U.K. U.S. Sweden

Predominate Local Level

Germany (in territorial waters) U.S. (in territorial waters up to 3 nautical miles) U.K. (in territorial waters with installed capacity under 100MW)

Security Bond

- Security bond is needed to garantee restoration if the owner is unable
- In Sweden a security bond is set as a part of the environmental permit

Security Bonds

- Denmark- Can be required for onshore and offshore
- France- Required for onshore and offshore
- Germany- Can be required for onshore and offshore
- Spain- Can be required for onshore and always required for offshore
- U.K.- Can be required for onshore and offshore
- U.S.- Always required on federal land, can be required for other areas
- Sweden- Required for onshore and offshore

International standard

- Does not exist yet
- A significant share of Europe's wind turbine fleet will come to the end of its projected lifetime within the next 10 to 15 years
- Task Force on Dismantling and Decommissioning, including the whole wind energy supply chain
- First report on Decommissioning of onshore wind turbine
 - Includes examples of Decommissioning plan and Decommisioning communication plan

Onshore Comparison

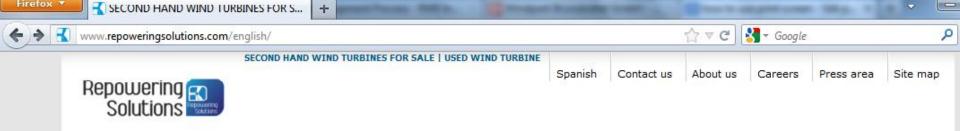
<u>Onshore</u>	Sweden	Denmark	France	Germany	Spain	U.K.	U.S.
Decomm. Policy	Local	National	National	Local	Local	National/Local	National/Local
Level of restoration	Case by case locally determined	Nationally determined with local input	Nationally determined	Locally determined	Locally determined	Case by case locally/nationally determined	Nationally determined/locally determined
Decommissioning bonds	Required	Can be required locally	Required	Can be required locally	Can be required locally	Can be required locally/nationally	Required on federal/can be required locally

Offshore Comparison

<u>Offshore</u>	Sweden	Denmark	France	Germany	Spain	U.K.	U.S.
Decomm. Policy	National/ Local	National	National	Most National	National	National/Local	National/Local
Level of restoration	Locally determined case by case	Nationally determined case by case	Nationally determined	Nationally determined case by case	Nationally determined case by case	Case by case locally/nationally determined	Nationally determined/locally determined
Decommissioning bonds	Required	Can be required nationally	Required	Can be required nationally	Required	Can be required locally/nationally	Required on federal/can be required locally

Resource management

- Oils
- Metals
- Rare Earth Metals
- Composites
- Concrete
- Cables


Turbine Disposal

- What are the options?
 - Reselling
 - Remanufacturing
 - Recycling
- What are companies doing?

Reselling

- Turbine may be resold as is
 - The buyer pays for the turbine and to move the turbine
 - The owner takes down the turbine and finds a buyer
 - The owner sales to a third party who would then remove and resale the turbine

Products

Hybrid System

Wind turbine Used wind turbine Refurbished wind turbine Remanufactured Wind Turbines Domestic wind turbine Focus areas Engineering Promoters wind farm Climate Change Energy projects

Our services

Purchase wind turbine Sales wind turbine Dismantling wind farm Inspection & Quality Repowering Engineering EPC Energy Projects Turnkey Energy Plants Installation Transport & Logistic Resources Financing Wind projects Marketplace

More on REPOWERING Careers Company profile References Partnerships Research & innovation

Used wind turbine for sale

REPOWERING sells used and new wind turbines and spare parts. In case you want to receive more information about one or more wind turbine models or parts, please you can

download list of used/refurbished wind turbines, also you send contact form with your request info. You will receive the information by e-mail.

Planning, financing and operational

Second hand wind turbines

Repowering Solutions is a supplier of wind turbines second hand, new and refurbished wind turbine.

Our goal is working with reconditioned turbines where we can provide a competitive solution. Those turbines sometimes are not older than 5 or 10 years and the technology is reliable and compliant with all legislation. As reconditioned we can provide full warranty and the cost usually drops to a half or less than new turbines. This advantage makes a cash flow turn to positive

Contact us

If you need more information about our services or you are ready to request a quote.

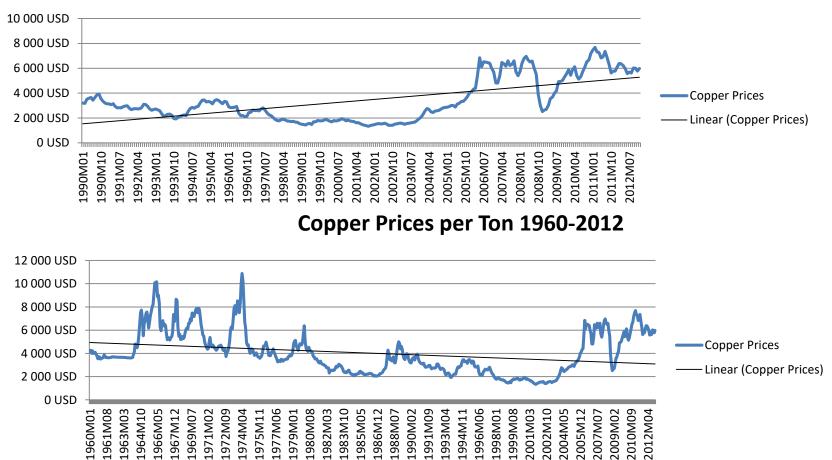
E-mail

Support & Download

Comments and Decomber de

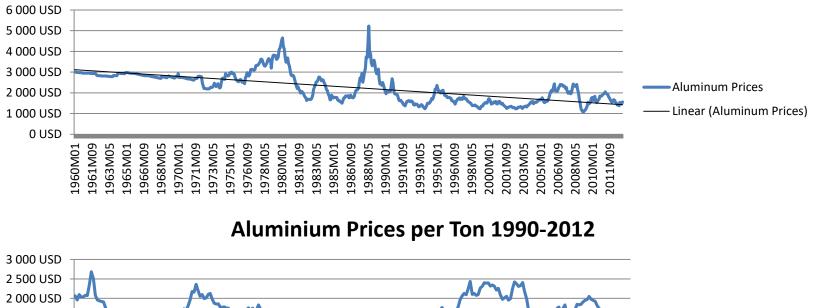
Remanufacturing/Refurbishing

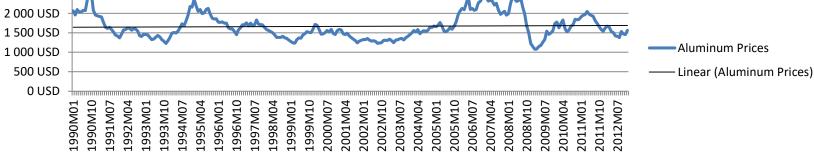
- Renovation of parts
 - Gearbox, pitch and yaw systems, etc.
- Half as expensive as new parts
 - Decreased life expectation
 - Quality and quantity concerns


Recycling

- Approximately 80% of a wind turbines weight comes from its tower, gearbox and blades.
 - Primary metal components
 - Steel (nickel and iron)
 - Copper
 - Aluminum
 - Non-metal components
 - Foundation
 - Blades
 - Quality is important

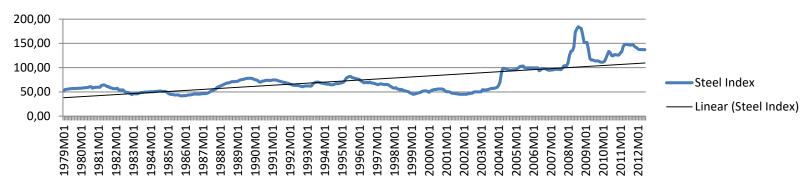
Copper

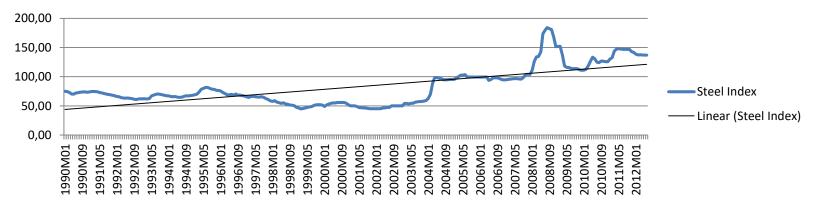

Copper Prices per Ton 1990-2012



Aluminum

Aluminium Prices per Ton 1960-2012





Steel

Steel Index Price 1979- June 2012

Steel Index Prices 1990- June 2012

- Limited disposal options
 - Landfill
 - Mechanical
 - Pyrolysis
 - Oxidation in fluidized bed
 - Chemical
 - Energy recovery
 - Non-conventional

Resource management

- Oils
- Metals
- Rare Earth Metals
- Composites
- Concrete
- Cables

Decomissioning costs

- Crane costs
- Labour costs
- Transport of materials
- Landfill cost
- Working to suitable size metals
- Removal of foundations
- Restoration of crane pads
- Restoration of roads
- Removal of cables
- Income
 - Reselling
 - Recycling

Decommissioning costs

	Danmark			Sverige				USA		
Size (MW)	0,2	0,6	1,65	0,225	0,5	2	2	1,5	2	2,4
Cost (Thousands of SEK)	53	130	427	40	270	1 125	465	349	749	729
Cost (sek/kw)	267	217	258	181	539	563	232	240	386	313

Source: Aldén et al - 2014

Costs of Decommissioning

- Installed capacity wind turbine size and amount
- Geographical location
- Grade of restoration

- Re-sell wind turbine
- Recycle metals, but wind turbine blades are challenge
- Removal of foundations, crane pads, roads and electrical cables

Decommissioning costs

Restoration	Sweden Model example	Sweden Gotland	Sweden Västerbotten	Italy Unknown	Sweden Falkenberg	Sweden Gotland
Level	1.65 MW	2 MW	2 MW	2 MW	0,225 MW	0,5 MW
-	Estimated	Estimated	Estimated	Estimated	Actual	Actual
	case	case	case	case	case	case
Foundations	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Cables	\checkmark			\checkmark		
Crane pads		\checkmark		\checkmark		\checkmark
Roads		\checkmark		\checkmark		\checkmark
Total Cost	1.482.000	1.125.000	465.000	4.000.000	41.643	269.600
Total cost per MW	898.000	562.000	232.000	2.000.000	181.000	539.000

Source: Aldén et al - 2014 & Perez O., Rickardsson E. – 2008

Decommissioning costs

Wind turbine	Blade diameter	Hub height	Decommissioning cost high	Decommissioning cost low	Actual WTGs	Resold/recycle income low	Resold/recycle income high
	(m)	(m)	(ThEuros per WTG)	(ThEuros per WTG)		(ThEuros per WTG)	(ThEuros per WTG)
Vestas V27	27	30	8,5	6,5	20	35	59
Vestas V29	29	30	8,5	6,5	5	48	78
Wind World 150 kW	20	24	8,5	6,5	3	9	13
Wind World 250 kW	25	30	8,5	6,5	2	16	27
Vestas V47	47	40 - 50	25	20	bid		
Vestas V52	52	65	50	40	bid	100	150*

*transport and deconstruction ~100 ThEuros

Source: Connected Wind, 2016

Security bond in Sweden 1

- Onshore security bond per wind turbine 300 000 to 400 000 SEK
- 15 % of entire decommissioning bond paid before construction
- 85 % of decommissioning bond paid in installments before and/or during operation
- Big variation 250 000 to 1 300 000 SEK per turbine
- Offshore was 1,5 million SEK per turbine

Security bond in Sweden 2

- The entire decommissioning bond paid before construction
- Most common 500 000 SEK per turbine
- Difference between concrete and steel towers.
- Example of 700 000 SEK steel tower and 1 million SEK concrete tower per turbine
- Recent example of 1,25 million SEK
- New insurance solution available

Guidance for restoration

- Swedish Environmental Protection Agency and Energy Agency
- Suggests that restoration grade and post treatment is set by the environmental permit
- Income from recycling of metals will not be considered when the security bond is set

Estimated decommissioning costs

Scenario	Turbine	Quantity	Cost of decommissioning per WT (SEK)	Residual value per WT (SEK)
1	Vestas V112 – 3MW	13	478 950	228 360
2	Nordex N117 – 2.4 MW	35	405 400	213 120
3	Siemens SWT 107 – 3.6 MW	8	445 460	205 030
4	Vestas V82 – 1.65 MW	20	351 260	100 735

Source: McCarthy, 2015

Estimated decommissioning costs – scale factor

Scenario	Turbine	Quantity	Cost of decommissioning per WT (SEK)	Residual value per WT (SEK)
5	Vestas V112 - 3MW	8	501 450	218 348
1	Vestas V112 - 3MW	13	478 950	228 360
6	Vestas V112 - 3MW	20	446 380	222 330
7	Vestas V112 - 3MW	35	428 950	222 480

Source: McCarthy, 2015

UPPSALA UNIVERSITET

Decommissioning costs – scale factor

Wind turbine	Blade diameter	Hub height	Decommissioning cost bid	Number of WTGs
	(m)	(m)	(ThEuros per WTG)	
	90	95	196	1
Vestas V90	90	95	147	2
	90	95	115	5
			4.05	
	90	95	105	10

Source: Connected Wind, 2016

Decommissioning of Wind Farms –

- In the planning phase you have the possibility to prepare for a limited environmental impact
- Decommission plan and costs needs to be considered/estimated in the planning phase
- Decommission costs are difficult to estimate
- Security bonds are often required
- Need to explore new ways to secure the bonds

